

Earth System Grid Federation

Sébastien Denvil (CNRS/IPSL). With contributions from ESGF Executive Committee and WGCM Infrastructure Panel

Climate Sciences Programs

Institut Pierre

Simon

Laplace

Sciences de

Bytes

Climate Sciences Programs

Institut Pierre

Simon

Laplace

Sciences de

CMIP : +76 %/year HDD : +45 %/year

Coupled Model Intercomparison Project

Institut Pierre

Simon Laplace

ciences de

Data ≠ Informations ≠ Knowledge

CMIPs, and in general any science involving cross-model comparisons, critically depend on the global data infrastructure – the "vast machine" (Edwards 2010) – making this sort of data-sharing possible.

Data consumers

Laplace

Scientists perform sequences of computations (e.g "poleward heat transport", "length of growing season") on datasets. Typically this is scripted in some data analysis language, and ideally it should be possible to apply the script to diverse datasets.

Data producers

aplace

Observational and model output data in the climate-ocean-weather (COW) community is initially generated in some "native" non-standard format, and any subsequent relative analyses requires considerable effort to systematise. Issues include moving and transient data sources, lossy data formats, curvilinear and other "exotic" coordinates.

Data organizers

aplace

Data organizers are the community within this ecosystem that facilitates the transformation of source dependent data to a neutral and readily consumable form. They maintain the standards for describing data in a manner that permits these transformations, and develop tools to perform them.

ESGF Data Infrastructure

ESGF represents a multinational effort to securely access, monitor, catalog, transport, and distribute petabytes of data for climate change research experiments and observations.

Institut Pierre

Simon Laplace

ciences d

ESGF Data Infrastructure

Institut Pierre

Simon

Laplace

Sciences de

ESGF Software Infrastructure

Institut Pierre

Simon

Laplace

Sciences de

Figure 1. Current ESGF software stack architecture at the beginning of 2016, representing Release Version 2.2.3.

ESGF release management

Missions

Institut Pierre

Simon

Laplace

ciences d

- ✓ Release management
- ✓ Build, test and validate
- Provide installation tools
- ✓ Secure deployments
- Administrators training and support

Challenges

- Automated builds and tests
- Easier installation

Node set up in less than one hour

Deployment and integration

Institut Pierre Simon Laplace

Sciences de

ESGF Supports federated systems

KNMI:ADAGUC viewer in the climate4impact.eu portal.

Institut Pierre

Simon

Laplace

ciences de

Visualisation completely decoupled from ESGF storage: uses OpenDAP

Dividing the work into components (i.e., data, computer, storage, and software) is easy enough, but putting together individual submissions to create a workflow for getting work done is not.

Data discovery, compute resource selection, data manipulation, derived data storage site selection, and software selection at each stage of the workflow is challenging at best.

Minimizing the time spent finding, using, and storing the data are among the more pressing concerns for users when collaborating in ESGF.

How long does it take you on average to discover and access the date and ressources you need ?

Table 8. How long does it take you on average to discover and access the data and resources you need?											
	Minutes		Hours		Days		Can't Find/Access		Total	Weighted Average	
Discover	49.53%	105	36.79%	78	10.38%	22	3.30%	7	212	1.67	
Access/Download	12.92%	27	42.11%	88	41.63%	87	3.35%	7	209	2.35	

Which takes the longest to discover and use ?

1			Table 9. Wl	hich ta	kes the long	gest to	discover and	use?		
	1 (Shorte	est)	2		3		4 (Longe	st)	Total	Weighted Average
Data	16.96%	29	22.22%	38	25.15%	43	35.67%	61	171	2.80
Computer	31.01%	49	49.37%	78	14.56%	23	5.06%	8	158	1.94
Storage	21.52%	34	36.08%	57	25.95%	41	16.46%	26	158	2.37
Software	24.53%	39	34.59%	55	20.75%	33	20.13%	32	159	2.36

Replication & versioning

- Impact on CMIP6 data management (DM) and ESGF governance (ESGF)
- Stable processes which are supervised by a board (the CDNOT Team) are needed for CMIP6 data consistency in ESGF
- CMIP6 data replication architecture:

Institut Pierre

Simon

Laplace

ciences de

Network Improvement

Esnet to ICNWG Site Packet Loss Testing

Institut Pierre

Simon

ciences de

Better network performance needed for CMIP6

ICNWG uses perfSonar to analyze networks performance between the collaborating sites, track the health of the network connections and verify the data paths between the end sites.

CMIP6 data is estimated to be 30PB. This amount of data will require a high quality network between replication sites.

All data gathered together, coming from field campaign, from observational network or from numerical simulations. Data are available to the scientific community. Data are transfered to the civil society for operational applications (Climate Services, Copernicus program...).

Institut Pierre

Simon

Laplace

ciences d

Models data

Ground observations

IPSL mesoscale computing and data centre hosts data and computing services relevant for climate research.

CMIP5 (2010-2016)

Institut Pierre

Simon

Laplace

ciences de

CMIP6 (2017-2023)

Institut Pierre

Simon

Laplace

ciences de

Earth System Documentation

ESDOC classes and concepts

Institut Pierre

Simon Laplace

Sciences de

vironn

ESDOC view & search tools

Institut Pierre Simon Laplace

Sciences de

es	s-doc	n		D	Documentation Search vo.R.o.3 Support						
Doo Type : Model	Doc Ve	es	-doc		Documentation Viewer v0.9.0.3 Suppo						
Search returned	42 of 107 records	Overview Cit	es-C		Project CMIPS +	Comparator Mo	odel Component Properties 🗧 Open				
stitute	Short Name	Atmosphere			A Bernardian						
DC .	BCC-CSM1.1	Convection C	Step 1 : Select Mo	der Componen	t Propenties		neip Raset Rex				
MCC	CMCC-CESM	Cloud Sim	1. Select Models	All 🔲	2. Select Components	v N	3. Select Properties				
ACC	CMCC-CM	Dynamical Co	ACCESSI.0	view	Aerosols		Aerosol Scheme				
		Advection	ACCESS13	view	Emission And Concentration	••	Bin Specker				
cc	CMCC-CMS	Radiation	BCC-CSM1.1	view	Model		Bulk Spuckes				
RM-CEHFACS	CNRM-CM5	Land Surface	CFSV2-2011	witew	Transport		Framework				
NO-BOM	ACCESS1.0	Albedo	CMCC-CESM	wienw	Atmosphere		Model Pramework				
10.0004	4000000 N	Carbon Cycle	CMCC-CM	wienw	Convection Cloud Turbulence		Scharze Charactertitics				
10-0011	AUGESST.3	Vegetation	CMCC-CMS	unioned.	Cloud Simulator		Scheme Type				
10-0CCCE	CSIRO-Mk3.6.0	Energy Balan RiverRouting	CNRM-CM5	winew	Dynamical Core		Species				
EARTH	EC-EARTH	Snow	CB/RO-MK3.8.0	View	Advection		Coupling With				
	ISA-CM4	Soil	EC-EARTH	wienw	Orography And Waves		ocean biogeochemical coupling				
		Heat Treat	GFDL-CM2P1	wiew	Radiation		Processes				
E	HadGEM2-ES	Hydrology	GFDL-CM3	view	Other		Standard Properties				
	PSL-CM5A-LR	Ocean	GFDL-ESM2G	(Linew)	Atmospheric Chemistry		Citations				
	IPSL-CMSA-MR	Advection	GFDL-ESM2M	(view)	Emission And Conc	•	Title				
~	110001	Boundary For	GFDL-HIRAM-C180	S-BANK	Gas Phase Chemistry	•	Description				
NU.	MINUCHI	Tracers	GFDL-HIRAM-C360	(view)	Heterogen Chemistry		Long Name				
00	MIROC5	Lateral Physic	0658-62-41	(Viero)	Stratospheric Heter Chem		Pi Email Address Pi Name				
HC	HadCM3	Tracers	GI88-E2-H-CC	view	Tropospheric Heter Chem		Short Name				
HC.	Hatopupa	Up & Low Bo	OISS-E2-R	Linew	Transport		vegetation model coupling				
	- AUGULING YN	Vertical Physi	GISS-E2-R-CC	view	Land Ico						
HC	HadGEM2-00	Interior Mi	GISS-E2CS-H	wienw	Glaciers						
HG	HedGEM2-ES	wixed Lay	GISS-E2CS-R	view	Sheet						
			HADOMS	Liene	Ice Sheet Dynamics						
E to Leave			HADGEM2-A	view	Shelves						

ESDOC CMIP6 Errata Service

Institut Pierre Simon Laplace

Sciences de

IPSLCM6 Development cost

- Total Physical Source Lines of Code (SLOC) = 761,464
 - Development Effort Estimate, Person-Years = 209
 - Schedule Estimate, Years = **4.08**
 - Estimated Average Number of Developers (Effort/Schedule) = **51.29**
 - Total Estimated Cost to Develop = **\$ 28,271,263**

• SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

Institut

Laplace

ciences o

- Estimated Average Number of Developers (Effort/Schedule) = 17.33
- Total Estimated Cost to Develop = \$ 4,912,874

• SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

• Total Physical Source Lines of Code (SLOC) = 66,805 • Development Effort Estimate, Person-Years = 16.48

- Schedule Estimate, Years = 1.55
- Estimated Average Number of Developers (Effort/Schedule) = **10.61**
- Total Estimated Cost to Develop = **\$ 2,226,850**

• SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

List of aspects which are not covered in this presentation but which are in process in ESGF working groups and in the WIP:

- CMOR (Climate Model Output Rewriter) (Data Management)
- Control Vocabularies (DM)
- DRS (Data Reference Syntax) (DM)
- Licensing (DM)
- GUI (ESGF)
- AAI (ESGF)

ESGF: <u>http://esgf.llnl.gov/</u> WIP/WGCM: <u>https://earthsystemcog.org/projects/wip/</u>

The WIP : Work In Progress

WIP (WGCM Infrastructure Panel) produced CMIP6 Position Papers: <u>Final paper:</u>

- CDNOT (CMIP Data Node Operation Team) Terms of Reference
- CMIP6 Persistent Identifiers Implementation Plan
- CMIP6 Replication and Versioning
- CMIP6 Licensing and Access Control
- CMIP6 Data Citation and Long Term Archival
- CMIP6 Quality Assurance

ciences de

anlace

CMIP6 ESGF Publication Requirements

Working Papers:

- CMIP6_errata_system
- CMIP6_Reference_Vocabularies:lists
- CMIP6 Data Reference Vocabularies
- CMIP6 Data Request: Structure and Process
- CMIP6_global_attributes_filenames_CVs

Thank you for your attention

